

Task Model 1

Response Type: Equation/Numeric

DOK Level 1

3.NBT.A.1

Use place value understanding to round whole numbers to the nearest 10 or 100.

Evidence Required:

1. The student solves non-contextual problems using place value understanding to round whole numbers to the nearest 10 or 100.

Tools: None

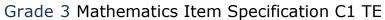
Prompt Features: The student is prompted to solve place value problems that include rounding whole numbers to the nearest 10 or 100.

Stimulus Guidelines:

- Follow stated guidelines on allowable number ranges.
- Item difficulty can be adjusted via these example methods:
 - Two-digit number that rounds to the nearest ten
 - Three-digit number that rounds to the nearest hundred
 - o Three-digit number that rounds to the nearest ten

TM1a

Stimulus: The student is presented with a two- or three-digit number, and then asked to round to the nearest ten or hundred.


Example Stem 1: What is 44 rounded to the nearest ten?

Example Stem 2: What is 456 rounded to the nearest ten?

Example Stem 3: What is 726 rounded to the nearest hundred?

Rubric: (1 point) The student correctly enters the number rounded to the given place (e.g., 40; 460; 700).

Response Type: Equation/Numeric

Task Model 1

Response Type: Equation/Numeric

DOK Level 1

3.NBT.A.1

Use place value understanding to round whole numbers to the nearest 10 or 100.

Evidence Required:

1. The student solves non-contextual problems using place value understanding to round whole numbers to the nearest 10 or 100.

Tools: None

Prompt Features: The student is prompted to solve place value problems that include entering the least or greatest whole number that rounds to a given two- or three-digit whole number.

Stimulus Guidelines:

- Follow stated guidelines on allowable number ranges.
- Item difficulty can be adjusted via these example methods:
 - o Identifies the least or greatest number that rounds to the nearest ten in a two-digit number.
 - o Identifies the least or greatest number that rounds to the nearest ten in a three-digit number.
 - Identifies the least or greatest number that rounds to the nearest hundred in a three-digit number.

TM₁b

Stimulus: The student is given a two- or three-digit whole number rounded to the nearest ten or hundred.

Example Stem 1: When rounding to the nearest ten, what is the **least** whole number that rounds to 50?

Example Stem 2: When rounding to the nearest ten, what is the **greatest** whole number that rounds to 50?

Example Stem 3: When rounding to the nearest hundred, what is the **least** whole number that rounds to 500?

Example Stem 4: When rounding to the nearest hundred, what is the **greatest** whole number that rounds to 500?

Example Stem 5: When rounding to the nearest ten, what is the **least** whole number that rounds to 520?

Example Stem 6: When rounding to the nearest ten, what is the **greatest** whole number that rounds to 520?

Rubric: (1 point) The student correctly enters the least/greatest whole number that rounds to the given number (e.g., 45; 54; 450; 549; 515; 524).

Response Type: Equation/Numeric

Source: http://www.illustrativemathematics.org/3.NBT.A.1

Task Model 2a-b

Response Type: Equation/Numeric

DOK Level 1

3.NBT.B.2

Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Evidence Required:

2. The student solves non-contextual problems by adding and/or subtracting within 1000, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Tools: None

Prompt Features: The student is prompted to find the unknown number that makes an equation true by adding and/or subtracting within 1000, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Stimulus Guidelines:

- The student is presented with a non-contextual addition or subtraction equation.
- Follow any stated guidelines on allowable number ranges.
- Unknown numbers are represented by a box (□).
- Item difficulty can be adjusted via these example methods:
 - o Number of addends in addition equation
 - Requires regrouping or not
 - Sum or difference is on the left or right side of the equation
 - Number of digits in addends (2 digits vs. 3 digits) and number of digits in subtrahends & minuends (2 digits vs. 3 digits)

TM2a

Stimulus: The student is presented with a non-contextual, straightforward addition equation with two to four addends.

Example Stem 1: What unknown number makes this equation true?

 $763 + 29 = \Box$

Example Stem 2: What unknown number makes this equation true?

 \Box = 763 + 29

TM2b

Stimulus: The student is presented with a non-contextual, straightforward subtraction equation with two to four subtrahends.

Example Stem 1: What unknown number makes this equation true?

 $763 - 96 = \Box$

Example Stem 2: What unknown number makes this equation true?

 \Box = 763 - 96

Rubric: The student enters the correct difference (e.g., 792; 792; 667; 667).

Response Type: Equation/Numeric

Task Model 2c-d

Response Type: Equation/Numeric

DOK Level 1

3.NBT.A.2

Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Evidence Required:

2. The student solves non-contextual problems by adding and/or subtracting within 1000, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Tools: None

Prompt Features: The student is prompted to find the unknown number that makes an equation true by adding and/or subtracting within 1000, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Stimulus Guidelines:

- The student is presented with a non-contextual addition or subtraction equation.
- Follow any stated guidelines on allowable number ranges.
- Item difficulty can be adjusted via these example methods:
 - o One addend/subtrahend is close to 10 or 100.
 - Numbers in the ones place combine to make 10, or numbers in the tens place combine to make 100.
 - o Subtract from the hundreds, tens or ones.
 - Unknown number may be presented on either side of the equation.

TM2c

Stimulus: The student is presented with a non-contextual addition equation. One addend is within 5 of 100 and one addend is 100.

Example Stem 1: What unknown number makes this equation true?

$$763 + 97 = 763 + 100 - \Box$$

Example Stem 2: What unknown number makes this equation true?

$$763 + 104 = 763 + 100 + \Box$$

TM2d

Stimulus: The student is presented with a non-contextual addition equation. One addend is within 4 of multiple of ten and one addend is a multiple of 100.

Example Stem 1: What unknown number makes this equation true?

$$763 + 7 = 700 + \Box$$

Example Stem 2: What unknown number makes this equation true?

$$763 + 43 = 800 + \Box$$

Rubric: The student enters the correct number to make the equation true (e.g., 3; 4; 70; 6).

Response Type: Equation/Numeric

Task Model 2e-f

Response Type: Equation/Numeric

TM2e

Stimulus: The student is presented with a non-contextual subtraction equation. One subtrahend is within 5 of 100 and one subtrahend is 100.

DOK Level 1

Example Stem 1: What unknown number makes this equation true?

3.NBT.A.2

Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

$$763 - 97 = 763 - 100 + \Box$$

Example Stem 2: What unknown number makes this equation true?

$$763 - 104 = 763 - 100 - \Box$$

Evidence Required:

2. The student solves non-contextual problems by adding and/or subtracting within 1000, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

TM2f

Stimulus: The student is presented with a non-contextual subtraction equation. One subtrahend is a multiple of 10.

Example Stem 1: What unknown number makes this equation true?

$$763 - 43 = 763 - 40 - \Box$$

Example Stem 2: What unknown number makes this equation true?

$$760 - 70 = 760 - 60 - \Box$$

Rubric: The student enters the correct number to make the equation true (e.g., 3; 4; 3; 10).

Response Type: Equation/Numeric

Tools: None

Version 3 Update:

Edited wording and example stems for TM2f.

Task Model 2g

Response Type: Matching Tables

DOK Level 1

3.NBT.A.2

Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Evidence Required:

2. The student solves non-contextual problems by adding and/or subtracting within 1000, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Tools: None

Version 3 Update: Added new TM2q.

Prompt Features: The student categorizes sums and differences within 1000 as either closer to a given number or greater than/less than a given number.

Stimulus Guidelines:

• Sums and differences are selected to encourage appropriate uses of rounding as a strategy.

TM2g

Stimulus: The student is presented with a table and sums or differences (but not both), and classifies them as closer to a given number or greater than/less than a given number.

Example Stem 1: Select whether each sum is greater than 80 or less than 80.

	Greater than 80	Less than 80
41 + 42		
33 + 35		
41 + 36		
46 + 37		

Example Stem 2: Select whether each difference is greater than 40 or less than 40.

	Greater than 40	Less than 40
83 - 40		
85 – 43		
83 - 45		
80 - 43		

Example Stem 3: Select whether each difference is greater than 40 or less than 40.

	Greater than 40	Less than 40
80 - 49		
80 - 43		
80 - 38		

Rubric: (1 point) The student enters the correct value for the unknown (e.g., GLLG; GGLL; LLG).

Response Type: Matching Tables

Task Model 2g

Response Type: Matching Tables

DOK Level 1

3.NBT.A.2

Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Evidence Required:

2. The student solves non-contextual problems by adding and/or subtracting within 1000, using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.

Tools: None

Version 3 Update:

Added new TM2q.

Example Stem 4: Identify whether each sum is closer to 70 or closer to 80.

	Closer to 70	Closer to 80
32 + 47		
26 + 51		
35 + 37		

Example Stem 5: Click the table to show whether each sum is closer to 400 or closer to 500.

	Closer to 400	Closer to 500
302 + 105		
398 + 49		
212 + 247		
196 + 251		

Rubric: (1 point) The student enters the correct value for the unknown (e.g., 80, 80, 70; 400, 400, 500, 400).

Response Type: Matching Tables

Task Model 3a

Response Type: Equation/Numeric

DOK Level 1

3.NBT.A.3

Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9×80 , 5×60) using strategies based on place value and properties of operations.

Evidence Required:

3. The student solves non-contextual computation problems by multiplying one-digit whole numbers by multiples of 10 in the range 10–90 using strategies based on place value and properties of operations.

Tools: None

Prompt Features: The student is prompted to find the unknown number that makes a multiplication equation true involving multiplication of single-digit whole numbers by multiples of 10.

Stimulus Guidelines:

- Multiplication problems are presented as equations with a box
 (□) for the unknown factor or product.
- Solutions for multiplication problems must be **within** 1000.
- Item difficulty can be adjusted via these example methods:
 - Single-digit factor is multiplied by a two-digit multiple of ten. The product is unknown.
 - Single-digit factor is multiplied by an unknown. The product is a multiple of ten.
 - Two-digit multiple of ten is multiplied by an unknown single-digit number. The product is known.
 - o Product is listed first in the equation.

TM3a

Stimulus: The student is presented with a multiplication equation including an unknown factor or product.

Example Stem 1: What unknown number makes the equation true?

 $5 \times 80 = \Box$

Example Stem 2: What unknown number makes the equation true?

3 x □ = 180

Example Stem 3: What unknown number makes the equation

true? $180 = \Box \times 3$

Example Stem 4: What unknown number makes the equation

true?

 $60 \times \square = 540$

Example Stem 5: What unknown number makes the equation

true?

 $540 = \Box \times 60$

Rubric: (1 point) The student enters the correct product (e.g., 400;

60; 60; 9; 9).

Response Type: Equation/Numeric

Task Model 3b

Response Type: Equation/Numeric

DOK Level 1

3.NBT.B.3

Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9×80 , 5×60) using strategies based on place value and properties of operations.

Evidence Required:

3. The student solves non-contextual computation problems by multiplying one-digit whole numbers by multiples of 10 in the range 10–90 using strategies based on place value and properties of operations.

Tools: None

Prompt Features: The student is prompted to find the unknown number that makes a multiplication equation true involving multiplication of single-digit whole numbers by multiples of 10.

Stimulus Guidelines:

- Multiplication problems are presented as equations with a box
 (□) for the unknown factor or product.
- Solutions for multiplication problems must be **within** 1000.
- Item difficulty can be adjusted via these example methods:
 - Three single-digit factors when multiplied together have a product that is a multiple of ten.
 - Decompose a multiple of ten to make a three factor multiplication problem.

TM3b

Stimulus: A whole number multiplication equation presented horizontally including three factors.

Example Stem: What unknown number makes the equation true?

$$(6 \times 5) \times \square = 240$$

Rubric: (1 point) The student enters the correct value for the unknown (e.g., 8).

Response Type: Equation/Numeric